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Abstract

Solidification from the melt to near net shape is a commonly used manufacturing technique. The fluid flow patterns
in the melt affect the quality of the final product. By controlling the flow behavior, the final solidified material can be
suitably affected. Most of the magnetic field approaches to melt flow control rely on the application of a constant mag-
netic field. A constant magnetic field results in the Lorentz force which is used to damp and control the flow. However,
simultaneous application of a magnetic gradient results in the Kelvin force along with the Lorentz force. This can be
used for better control of the melt flow resulting in higher crystal quality. In the present work, a computational method
for the design of solidification of a conducting material is addressed. The control parameter in the design problem is the
time history of the imposed magnetic field. A steady, constant magnetic gradient is also maintained during the process.
The design problem is posed as an unconstrained optimization problem. The adjoint method for the inverse design of
continuum processes is adopted. Examples of designing the time history of the imposed magnetic field for the direc-
tional growth of various materials are presented to demonstrate the developed formulation.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Solidification from the melt is the most commonly
used means of manufacturing to near net shape for most
materials, especially metals and semi-conductors. The
quality of the final product implicitly depends on the
process of solidification. For example, during crystal
growth, heat flux fluctuations from the melt to the crys-
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tal produce a cycle of crystallization and remelting at the
interface. This cycle produces dislocations and other
microscopic defects in the crystal. Convective flow in
the melt leads to fluctuations in the solute concentration
in the crystal which results in the formation of residual
stresses in the cooled crystal [1, Chapter 14]. Controlling
the solidification process is therefore a means of control-
ling the quality/properties of the final product.

All metals and most semi-conductor melts have a rel-
atively high electrical conductivity and are subject to
electromagnetic forces when moving in a magnetic field.
This concept has been used to damp natural convection
in the melt through the application of constant magnetic
ed.
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Nomenclature

B0 initial magnetic field
bf body force
b(t) non-dimensional magnetic field
B magnetic field
c solute concentration in the fluid
c0 reference concentration
Cp specific heat of the fluid
C sensitivity solute concentration
ci initial concentration in the melt
D solute diffusivity
ei unit vector in the ith direction
E induced electric field
F sensitivity temperature operator
F* adjoint temperature operator
g gravity constant
G sensitivity velocity operator
G* adjoint velocity operator
H sensitivity concentration operator
H* adjoint concentration operator
Ha Hartmann number
J sensitivity potential operator
J* adjoint potential operator
J electric current density
k thermal conductivity of the melt
LH latent heat of fusion
Le Lewis number
L characteristic length
M magnetization
m slope of the liquidus
n unit normal to the interface
nsd number of space dimensions
p pressure
Pr Prandtl number
Rk ratio of thermal conductivities
Ra ratio of thermal diffusivities
RaT thermal Rayleigh number
RaC solutal Rayleigh number
Rd Euclidean space of dimension d

S(b) cost functional
Ste Stefan number
t non-dimensional time
T �
i initial temperature in the solid

Ti initial temperature in the melt

T0 reference temperature
T temperature in the fluid
v velocity of the fluid
vf velocity of the solid–liquid interface
V sensitivity velocity
Vf sensitivity interface velocity

Greek symbols

a thermal diffusivity of the melt, the step
length in the optimization algorithm

bT, bC coefficient of expansion, thermal and solutal
c non-dimensional Kelvin force, the optimal

step size in the CGM
C boundary of the physical domain
cRaT magnetic Rayleigh number
DT reference temperature drop
Db perturbation to the magnetic field
Dc reference concentration drop
DDb directional derivative along Db

d c0
Dc

g adjoint potential
hi initial temperature of the melt
h�i initial temperature of the solid
h0 freezing temperature
h non-dimensional temperature
H sensitivity temperature
j partition coefficient
lm permeability of free space
m kinematic viscosity
n adjoint concentration
p adjoint pressure
P sensitivity pressure
ql density of the melt
q0 reference density
r, rm stress tensor, electrical conductivity
R sensitivity of the stress tensor
/ electric potential
U sensitivity potential
v mass magnetic susceptibility
vm magnetic susceptibility
w adjoint temperature
X physical domain
x adjoint velocity
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fields. The application of magnetic fields is also known
to stabilize both flow and temperature oscillations in
the melt and thereby represents a promising opportunity
to obtain an improved crystal quality [2,3]. The effects of
a constant magnetic field on melt convection have been
previously investigated by several authors [4–7]. The
effects of a strong vertical magnetic field on convection
and segregation in the vertical Bridgeman crystal growth
process was considered by Ben Hadid et al. [6,7], while
Kim et al. [8] studied the effects of a magnetic field on
the horizontal Bridgeman growth. Recently, Gunzberger
et al. [9] estimated the optimal magnitude of the
constant magnetic field necessary for the suppression
of turbulent flow in the melt. Even though there is a
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Fig. 1. Schematic of the directional solidification system. A
time-varying magnetic field B and a constant magnetic field
gradient oB

oz are applied in the z direction.

4176 B. Ganapathysubramanian, N. Zabaras / International Journal of Heat and Mass Transfer 48 (2005) 4174–4189
therapeutic effect of the application of a constant mag-
netic field there are some disadvantages to its use during
solidification:

• A constant magnetic field suppresses thermo-solutal
flow, but the inter-dendritic flows and macro-segre-
gation patterns are not significantly affected by the
magnetic field [10].

• Any significant convection damping requires prohib-
itively large magnetic fields.

• The magnetic field must be oriented in a specific
direction relative to the bulk flow for the Lorentz
force to take effect.

To circumvent these problems, the use of different
types of magnetic fields on solidification were inves-
tigated. The effect of a Rotating Magnetic Field
(RMF) on crystal growth and solidification was inves-
tigated by Patzold et al. [11] and Roplekar and Dantzig
[12]. Galindo et al. [13] studied the effects of a rotating
as well as a travelling magnetic field on crystal growth
processes. The use of a RMF results in suppression of
convection but fluctuations in temperature and concen-
tration leading to striation patterns in the crystal still
persist. Recently, Evans et al. [14] demonstrated that
a magnetic gradient could be used to damp convection
in any material, conducting or non-conducting. A mag-
netic gradient subjects the fluid to the Lorentz and
Kelvin forces [15]. A suitable combination of these
forces can result in suppression of fluctuations along
with convection damping. In an earlier work [16], the
authors investigated the effect of magnetic gradients
on the quality of the crystal (pure material/dilute mix-
ture). A constant magnetic gradient superimposed on a
uniform magnetic field caused substantial reduction in
convection and resulted in a much better crystal. In
[17], the authors investigate the design of non-homo-
geneous magnetic fields to control the solidification
and crystal growth of non-conducting (e.g. biological)
materials. In the present work, the effect of the varia-
tion in the magnetic field superimposed on a constant
gradient on growth of a conducting material is investi-
gated. The time history of the magnetic field that needs
to be applied during growth to obtain a convection-
less (microgravity-like) environment in the melt is
estimated.

To the best of our knowledge, this is the first time
that (mathematical) control of solidification is affected
through the variation in magnetic fields. As stated ear-
lier, the time history of the magnetic field is the design
parameter that has to be estimated. Various solution
methods based on finite or infinite dimensional optimi-
zation techniques can be developed to calculate the
unknown design parameters. A particularly effective
method is the infinite-dimensional regularization
scheme. This method, which involves the formulation
of an appropriate continuum adjoint problem that al-
lows the analytical calculation of the exact gradient of
the objective function, is extensively used in the present
work. The sequencing of the various sections in this pa-
per is as follows. The equations governing the underly-
ing physics of the problem of interest are presented in
Section 2. The inverse solidification problem is posed
as a functional optimization problem and the adjoint
system of equations is derived in Section 3. In Section
4, the developed formulation is applied to various exam-
ples. Finally, in Section 5, a summary of the work and
some conclusions are provided.
2. The direct solidification problem

Let X be a closed bounded region in Rnsd , where nsd is
the number of spatial dimensions, with a piece-wise
smooth boundary C. The region is filled with an incom-
pressible, conducting fluid. At time t = 0, a part of the
boundary is cooled below the freezing temperature of
the fluid and solidification begins along that boundary.
Two-dimensional applications are considered in this pa-
per but the formulation presented is dimension-indepen-
dent. Let us denote the solid region by Xs and the liquid
region by Xl. These regions share a common solid–
liquid interface boundary CI. As seen in Fig. 1, the
region Xl has a boundary Cl which consists of CI (the
solid–liquid interface), Col (the mold wall on the liquid
side), Cbl (the bottom boundary of the liquid domain)
and Ctl (the top boundary of the liquid domain). Simi-
larly Xs has boundary Cs, which consists of CI, Cos,
Cbs and Cts.

An externally applied (spatially varying) magnetic
field acts on the whole domain X. An assumption that
the induced magnetic field is very small compared to
the external magnetic field is made (the ratio of the in-
duced to the external field, the magnetic Prandtl num-
ber, is extremely small for semi-conductors and metals
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[1]). The action of the magnetic field on the moving fluid
results in the generation of induced currents in the fluid
[18]. The electrical resistance of the material causes heat-
ing of the fluid element. This heating, called the Joule
heating is neglected after an order of magnitude analysis
reveals that this term is small compared to the other
terms in the energy equation. With the classical MHD
assumptions of non-relativistic flow and quasi-mag-
neto-statics, the electro-magnetic force on the system is
written as follows [19]:

fem ¼ J � B þ ðrBÞM ð1Þ

where J is the current density and M is the magnetiza-
tion given as

M ¼ vm

lmð1þ vmÞ
B � vm

lm

B ð2Þ

where vm is the magnetic susceptibility of the material
and lm is the permeability of free space.

The time variation of the magnetic field is small
enough for the quasi-magneto-static assumption to be
valid. The current density J can be represented through
the extended form of Ohm�s law [1] as follows:

J ¼ reðE þ v � BÞ ð3Þ

where E is the induced electric field. Under the assump-
tion of small magnetic Prandtl number, E is restricted to
the form E = 	$/, where / is the electric potential [20].
Following Tagawa et al. [21,22], the Boussinesq approx-
imation applied to the Kelvin term results in Eq. (1)
becoming

fem ¼ reð	r/ þ v � BÞ � B þ cq0gbðT 	 T 0Þ ð4Þ

where c = ciei with

ci 

v
P3

j¼1
oBi
oxj

Bj

lmg
ð5Þ

and v is the mass magnetic susceptibility of the material.
For diamagnetic fluids, the mass susceptibility is inde-
pendent of temperature but the form of the Kelvin force
in Eq. (4) arises from the density changes with tempera-
ture. As can be seen from Eq. (4), uniform magnetic field
damping depends on the action of the Lorentz force
which is proportional to the vector product of the flow
velocity and the field strength. It therefore has a decreas-
ing influence with decreasing flow velocity and so is
ill-fitted to the further damping of very weak flows. In
comparison to the Lorentz force, the Kelvin force is
independent of the fluid velocity and it can lead to sub-
stantial suppression of velocity with moderate magnetic
fields.

Remark 1. The Kelvin force can be controlled inde-
pendently in different ways. For example, by varying
the direction and/or magnitude of the magnetic field
or, by varying the magnitude of each of the compo-
nents of the gradient tensor. The independent control
of the external magnetic field and its gradient can be
achieved in Magnetic Resonance Imaging (MRI)
machines that require independently controllable mag-
netic fields and magnetic gradients [23] for reliable
imaging of human tissue. Rapid progress in MRI
imaging has resulted in the commercial production
of linear magnetic fields producing gradient coils
[24].

Based on Remark 1, in the context of solidification
and crystal growth control using magnetic fields, it is
possible to control the Kelvin force term in twelve inde-
pendent ways. But in the present work, the variation in
the Kelvin force is assumed to be only due to changes in
the magnetic field. That is, the magnetic gradients are
kept fixed and any variation in the Kelvin force is due
to corresponding changes to the magnetic field B(t). Fur-
ther, since the aim of using a magnetic field is to control
the convection causing forces, the magnetic field from
now on is considered to be in the direction of buoyancy
i.e. B = Bez and rB ¼ oB

oz ez. For this case, we simply de-
note cz as c. Extension to different orientations of the
magnetic field and magnetic gradients is very straight-
forward. The applied field B(t) is non-dimensionalized
with the initial field of magnitude B0 (unless is otherwise
stated), and the non-dimensionalized field is referred to
as bðtÞ ¼ BðtÞ

B0
. The Kelvin force is therefore given as

c0bq0b(T 	 T0)geg, where c0 is
vB0

oB
oz

lg and the applied mag-

netic field gradient oB
oz is here taken as constant. In the

notation above, eg is the unit vector in the direction of
gravity, i.e. eg = 	ez.

For clarity of analysis and to understand the effect of
competing complex processes, the system is analyzed in
a non-dimensional form. The characteristic scales are
taken as L2/a for time and a/L for velocity. The di-
mensionless temperature is defined as h 
 (T 	 T0)/DT,
Similarly, the dimensionless concentration is taken as
c 
 (c 	 c0)/Dc. The electric potential / is non-dimen-
sionalized with aB0. Henceforth, / refers to the non-
dimensionalized electric potential unless otherwise
stated.

The basic equations that govern the evolution of the
directionally solidifying system are given in Box I. In the
equations, Rk and Ra are the ratios of the thermal con-
ductivity and thermal diffusivity, respectively, of the
solid to the melt. The governing equations are given in
terms of the following dimensionless groups: Prandtl
number, (Pr 
 m/a), Lewis number (Le 
 a/D), Stefan
number (Ste 
 (CpDT)/LH), thermal Rayleigh number
(RaT 
 gbTDTL3/ma), solutal Rayleigh number (RaC 

gbCDcL3/ma), magnetic Rayleigh number ðcRaT; c 

vBdB

dz
lg Þ and Hartmann number ðHa 
 ðre

qlm
Þ1=2B0LÞ.
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Box I. Direct problem to define v(x, t; b), h(x, t; b),
c(x, t; b) and /(x, t; b)
• Melt region

r� v¼ 0; ðx; tÞ 2XlðtÞ� ½0; tmax�
ov

ot
þ v �rv¼	rpþPrr2v	RaTPrhleg

þRaTPrc0bhlegþRaCPrceg

þHa2Prb2½	r/þv� eB�� eB;

ðx; tÞ 2XlðtÞ� ½0; tmax�
oc
ot

þ v �rc¼ Le	1r2c; ðx; tÞ 2XlðtÞ� ½0; tmax�

r2/¼r�ðv� eBÞ; ðx; tÞ 2XlðtÞ� ½0; tmax�
ohl

ot
þ v �rhl ¼r2hl; ðx; tÞ 2XlðtÞ� ½0; tmax�

ohl

on
¼ 0;

oc
on

¼ 0; ðx; tÞ 2 ðClðtÞ	CIðtÞÞ� ½0; tmax�

v¼ 0;
o/
on

¼ 0; ðx; tÞ 2ClðtÞ� ½0; tmax�

v¼ 0; c¼ ci; h¼ hi; x2Xlðt¼ 0Þ

• Solid zone

ohs

ot
¼ Rar2hs; ðx; tÞ 2 XsðtÞ � ½0; tmax�

hs ¼ h�
i ; x 2 Xsðt ¼ 0Þ

ohs

on
¼ 0; ðx; tÞ 2 ðCs 	 CosÞ � ½0; tmax�

hs ¼ hs2; ðx; tÞ 2 Cos � ½0; tmax�

• Interface

Rk
ohs

ot
	 ohl

ot
¼ Ste	1vf � n; ðx; tÞ 2 CIðtÞ � ½0; tmax�

h ¼ h0 þmc; ðx; tÞ 2 CIðtÞ � ½0; tmax�
oc
on

¼ Leðk	 1Þðcþ dÞvf � n;

ðx; tÞ 2 CIðtÞ � ½0; tmax�
3. Definition of the inverse design solidification problem

3.1. Design objectives

In the conclusions in Chapter 5 in [1], Hurle et al.
comment on the ideal conditions for crystal growth.
They state the best results can be anticipated to come
from the combined use of microgravity and a magnetic
field, wherein the microgravity would reduce the steady
convective flows to a minimum with the magnetic field
damping any small fluctuations. The effect of the spa-
tially varying magnetic field is similar to this situation.
The Kelvin force causes a state of reduced gravity while
the Lorentz damps out small fluctuations. Keeping this
in view, the objective of the design procedure is to pro-
duce a growth that is purely diffusion-dominated. The
reduction of convection in the melt can be achieved by
applying the magnetic field in such a way so as to reduce
the convection causing buoyant forces. The definition of
the design solidification problem can now be stated as
follows:

With given magnetic field gradient oB
oz, find the time history

of the superimposed magnetic field b(t), such that the

directional solidification defined by the initial boundary

value problem (IBVP) in Box I proceeds with negligible

convection over the entire time domain.

3.2. Controlled solidification of pure materials

and dilute alloys: analytical design solution

In this subsection, an analytical expression for the
time history of the imposed magnetic field is determined.
Convection, in the case of a pure material or a dilute al-
loy, is due to the thermal gradients that occur during the
solidification. At any time instant, the net body force
acting on a fluid volume in the melt region is the sum
of the thermal buoyant force, the Kelvin force and the
Lorentz force. But the Lorentz force implicitly depends
on the velocity of the fluid volume. At the beginning
of the growth, when the whole melt is in a quiescent
state, only the first two of the afore mentioned three
body forces act on the fluid volume.

bf ¼ 	RaTPrhlðx; tÞeg þ RaTPrc0bhlðx; tÞeg ð6Þ

If c0b is chosen to be equal to 1, then both the terms
on the right-hand side of the above equation become
equal and cancel to zero. In other words, if the field is
chosen such that

c0 ¼
vB0

oB
oz

lg
¼ 1.0; bðtÞ ¼ 1.0 ð7Þ

then because of the absence of any convection causing
forces, the growth at early times would be diffusion-
dominated. This would ensure that there is no (signifi-
cant) Lorentz force acting on the fluid volume. In other
words, initially the effect of Lorentz force is negligible
because of the stagnant fluid, but at later times the proper
choice of c0 enforces negligible convection, and hence
zero Lorentz force. Therefore, given the magnitude of
the applied magnetic gradient oB

oz, the optimal value of
the imposed magnetic field is B0 ¼ lg

voB
oz
. In this case, b(t)

remains constant through out the growth. In general,
time varying b(t) can be achieved by varying the power
(current) input to the magnetic coils [1,23].
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3.3. Controlled solidification of binary alloys:

a functional optimization framework

In this subsection, the solidification of a conducting
mixture in the general case is considered. Electromag-
netic as well as solutal and thermal induced convection
is dominant during the solidification process. The non-
dimensional governing equations are given in Box I.
To achieve a diffusion-based growth, the combined mag-
netic field and magnetic field gradient must be chosen in
such a way so as to negate the effects of the thermal and
convective buoyancy. With the particular assumptions
of constant magnetic gradient introduced earlier, the
objective is restated in terms of b(t) 2 L2[0, tmax]. In
particular, we are looking for an optimal solution
�bðtÞ 2 L2½0; tmax� such that

Sð�bÞ 6 SðbÞ 8bðtÞ 2 L2½0; tmax� ð8Þ
where

SðbÞ ¼ 1

2
kvðx; t; bÞk2L2ðXl�½0;tmax �Þ

¼ 1

2

Z tmax

0

Z
XlðtÞ

vðx; t; bÞ � vðx; t; bÞdXdt ð9Þ

with the melt velocity v(x, t; b) defined from the solution
of the problem in Box I with the magnetic field b(t) as a
function parameter and with a given superimposed mag-
netic gradient, oB

oz. In the following discussion, we will use
ðf ; gÞL2ðXl�½0;tmax �Þ or simply (f, g) to denote the dot prod-
uct of any (scalar or vector) functions f and g in
L2(Xl · [0, tmax]).

The main difficulty with the above optimization
problem is the calculation of the gradient S 0(b(t)) of
the cost functional in L2[0, tmax]. Introducing the direc-
tional derivative DDbSðbÞ 
 ðS0ðbÞ;DbÞL2½0;tmax �

of S(b),
and using the definition of the cost functional, we can
write the following:

DDbSðbÞ 
 ðS0ðbÞ;DbÞL2 ½0;tmax �

¼ ðvðx; t; bÞ;Vðx; t; b;DbÞÞL2ðXl�½0;tmax �Þ ð10Þ

where the sensitivity velocity field V(x, t; b, Db) 

DDbv(x, t; b), the sensitivity temperature field
H(x, t; b, Db) 
 DDbh(x, t; b), sensitivity concentration
field C(x, t; b, Db) 
 DDbc(x, t; b) and sensitivity poten-
tial field U(x, t; b, Db) 
 DDb/(x, t; b) are defined as the
linear Db parts of h(x, t; b), v(x, t; b), c(x, t; b) and /
(x, t; b), respectively, calculated at b:

hðx; t; bþ dbÞ ¼ hðx; t; bÞ þ Hðx; t; b;DbÞ þOðkDbk2L2Þ
vðx; t; bþ DbÞ ¼ vðx; t; bÞ þ Vðx; t; b;DbÞ þOðkDbk2L2Þ
cðx; t; bþ DbÞ ¼ cðx; t; bÞ þ Cðx; t; b;DbÞ þOðkDbk2L2 Þ
/ðx; t; bþ DbÞ ¼ /ðx; t; bÞ þ Uðx; t; b;DbÞ þOðkDbk2L2 Þ

As is clear from Eq. (10), the calculation of the gra-
dient S 0(b) requires the evaluation of the adjoint to the
sensitivity of the velocity operator. The definition of
the sensitivity problem is addressed next followed by
the derivation of the corresponding adjoint operators.

3.3.1. Governing equations for the sensitivity problem

Taking the directional derivatives of the governing
equations of Box I in the direction of Db and calculated
at the direct fields h(x, t; b), c(x, t; b), /(x, t; b) and
v(x, t; b) corresponding to the imposed field b(t) results
in a linear sensitivity solidification problem that can be
used to evaluate the fields H(x, t; b, Db), C(x, t; b, Db),
U(x, t; b, Db) and V(x, t; b, Db). This sensitivity problem
is summarized in Box II, where R(x, t; b, Db) and
P(x, t; b, Db) are used to denote the directional deriva-
tives (sensitivities) of stress r(x, t; b) and pressure
p(x, t; b), respectively.

Remark 2. It is important to notice that the domain of
definition Xl(t) of the governing equations in the melt as
given in Box I is itself time varying, and also depends on
the control parameter b(t). In deriving the sensitivity
equations of Box II, the governing equations of Box I
are linearized (with respect to b(t)) by considering the
contribution of the sensitivity with respect to b(t) of
the front velocity (and thus of the domain) only in the
Stefan temperature condition and the concentration
condition at the interface. It has been verified with
extensive numerical testing [17], that the system of
equations in Box II indeed represents the evolution of
the sensitivity fields governing the solidification process.
Sensitivity calculations based on the direct analysis
for two nearby magnetic fields (b(t) and b(t) + Db(t))
also revealed that the sensitivity Vf of the front velocity
vf was negligible compared to other sensitivity varia-
bles.
3.3.2. Adjoint equations

The derivation of the adjoint operators is given in
this subsection. The calculation of the gradient of the
objective function requires the appropriate evaluation
of the adjoint operators to the sensitivity operators.
The adjoint temperature is represented as w while x, n
and g represent the adjoint velocity, adjoint concen-
tration and adjoint electric potential, respectively. The
sensitivity operators for the thermal, fluid flow, concen-
tration and electric potential problems are denoted by F,
G, H and J. The adjoint operators F*, G*, H*, J* are
defined from the following Lagrange identities:

ðF�w;HÞL2ðXl�½0;tmax�Þ ¼ ðw;FHÞL2ðXl�½0;tmax �Þ 
 0

ðG�x;VÞL2ðXl�½0;tmax �Þ ¼ ðx;GVÞL2ðXl�½0;tmax �Þ 
 0

ðH�n;CÞL2ðXl�½0;tmax �Þ ¼ ðn;HCÞL2ðXl�½0;tmax �Þ 
 0

ðJ�g;UÞL ðX �½0;t �Þ ¼ ðg; JUÞL ðX �½0;t �Þ 
 0
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Consider first the concentration operator H*. We
start with

ðn;HCÞ ¼ n;
oC
ot

þ v � rC þ V � rc	 Le	1r2C
� �

¼ 0

ð11Þ

Following the derivations given in [17], the above equa-
tion can be written as

n;
oC
ot

þ v � rC þ V � rc	 Le	1r2C
� �

¼ C;	 on
ot

	 v � rn 	 Le	1r2n

� �
þ ðn;V � rcÞ

	 Le	1ðnrC 	 Crn; nÞCI

¼ 0 ð12Þ

Box II. Sensitivity problem to define V(x, t; b, Db),
H(x, t; b, Db), C(x, t; b, Db) and U(x, t; b, Db)
• Melt region

r�V¼ 0; ðx; tÞ 2XlðtÞ� ½0; tmax�
oV

ot
þV �rvþ v �rV

¼	r�R	RaTPrð1	 c0bÞHegþRacPrCeg

þRaTPrDbc0hegþHa2Prb2½	rUþV� eB�� eB

þ2Ha2PrbDb½	r/þ v� eB�� eB;

ðx; tÞ 2XlðtÞ� ½0; tmax�
R¼	PIþPr½rVþðrVÞT �; ðx; tÞ 2XlðtÞ�½0; tmax�
oC
ot

þ v �rCþV �rc¼ Le	1r2C;

ðx; tÞ 2XlðtÞ� ½0; tmax�
oH
ot

þv �rHþV �rh¼r2H; ðx; tÞ 2XlðtÞ�½0; tmax�

r2U¼r�ðV� eBÞ; ðx; tÞ 2XlðtÞ� ½0; tmax�
oHl

on
¼ 0;

oC
on

¼ 0; ðx; tÞ 2 ðClðtÞ	CIðtÞÞ� ½0; tmax�

V¼ 0;
oU
on

¼ 0; ðx; tÞ 2ClðtÞ� ½0; tmax�

V¼ 0; C¼ 0; H¼ 0; U¼ 0 x2Xlðt¼ 0Þ

• Interface

Rk
oHs

on
	 oHl

on
¼ Ste	1Vf � n;

ðx; tÞ 2 CIðtÞ � ½0; tmax�
H ¼ mC; ðx; tÞ 2 CIðtÞ � ½0; tmax�
oC
on

¼ Leðk 	 1Þðcþ dÞVf � n þ Leðk 	 1ÞCvf � n
where the notation ðf; nÞCI
¼

R
CI

R tmax

0
f � ndCdt is intro-

duced for any vector function f. By adding and subtract-
ing (C, x Æ eg) from the above equation, the following is
derived:

C;	 on
ot

	 v � rn 	 Le	1r2n þ x � eg
� �

þ ðn;V � rcÞ

	 ðC;x � egÞ 	 Le	1ðnrC 	 Crn; nÞCI
¼ 0 ð13Þ

The adjoint concentration operator is then defined as
follows:

H�n 
 	 on
ot

	 v � rn 	 Le	1r2n þ x � eg ¼ 0 ð14Þ

We enforce n(x, t; b) to be the solution of the adjoint
equation defined by Eq. (14) with zero flux on

on on all
boundaries of Cl except the interface CI, where the fol-
lowing equation is applied:

on
on

¼
n oC

on

C

¼ n
Leðk 	 1Þðcþ dÞVf � n þ Leðk 	 1ÞCvf � n

C
ð15Þ

where oC
on on CI was written using the expression given in

Box II. Neglecting the sensitivity of the front velocity
(see Remark 2) leads to the following boundary condi-
tion for the adjoint concentration:

on
on

¼ nLeðk 	 1Þvf � n ð16Þ

Using the adjoint concentration operator in Eq. (14)
along with Eq. (16), the following coupling criterion
for the concentration and velocity fields is obtained from
Eq. (13):

ðn;V � rcÞ ¼ ðC;x � egÞ ð17Þ

A similar procedure is followed for the adjoint tempera-
ture operator F�. Beginning with

ðw;FHÞ 
 w;
oH
ot

þ v � rH þ V � rh 	r2H

� �

¼ 0 ð18Þ

and following steps similar to the derivation of the con-
centration operator (see [17]) gives

w;
oH
ot

þ v � rH þ V � rh 	r2H

� �

¼ H;	 ow
ot

	 v � rw 	r2w

� �
þ ðw;V � rhÞ

þ ðwrH 	 Hrw; nÞCI

¼ 0 ð19Þ
where we have used the initial conditions for H and the
zero flux boundary conditions of H on (Cl 	 CI). Fur-
ther, boundary conditions of zero flux for the adjoint
temperature in (Cl 	 CI) is used in the above derivation.
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A final condition on the adjoint temperature field was
also introduced in the derivation of Eq. (19) as follows:

wðx; tmax; bÞ ¼ 0; x 2 XlðtmaxÞ ð20Þ

Let us add and subtract (H, (1 	 c0b)x Æ eg) from the
above equation to derive the following:

H;	 ow
ot

	 v � rw 	r2w þ ð1	 c0bÞx � eg
� �

þ ðw;V � rhÞ þ ðwrH 	 Hrw; nÞCI

	 ðH; ð1	 c0bÞx � egÞ ¼ 0 ð21Þ

The adjoint temperature operator is defined as

F�w 
 	 ow
ot

	 v � rw 	r2w þ ð1	 c0bÞx � eg ¼ 0 ð22Þ

The boundary conditions are zero flux ow
on ¼ 0, on all

parts of Cl except the interface CI where the following
equation is satisfied:

H
ow
on

¼ w
oH
on

¼ w
oHs

on
	 Ste	1Vf � n

� �
ð23Þ

where oH
on at the left side of the freezing front was

expressed above using the sensitivity of the Stefan con-
dition given in Box II. The temperature boundary
conditions in the solid region for the direct problem
are independent of the control parameter. That is, the
thermal boundary conditions remain the same for
growth under b(t) as well as b(t) + Db(t). This results
in homogeneous boundary conditions for the sensitivity
solid temperature, leading to a trivial solution for the so-
lid sensitivity temperature evolution. This together with
neglecting Vf (Remark 2) gives us a condition of zero
flux for the adjoint temperature on the interface bound-
ary. Using Eqs. (21)–(23) leads to the following coupling
criterion for the temperature and velocity fields:

ðw;V � rhÞ ¼ ðH; ð1	 c0bÞx � egÞ ð24Þ

The electric potential operator J* is derived as follows:

ðg; JUÞ ¼ ðg;r2U 	r � ðV � eBÞÞ ¼ 0 ð25Þ

Applying Green�s theorem to Eq. (25) and applying the
zero flux boundary conditions for the sensitivity poten-
tial and forcing a zero flux condition on the boundary
for the adjoint potential gives

ðU;r2gÞ 	 ðV;r � ðg � eBÞÞ ¼ 0 ð26Þ

We now add and subtract (U, b2$ Æ (x · eB)) to Eq. (26)

ðU;r2g 	 b2r � ðx � eBÞÞ þ ðU; b2r � ðx � eBÞÞ
	 ðV;r � ðg � eBÞÞ ¼ 0 ð27Þ

The adjoint electric potential is defined as

J�g 
 r2g 	 b2r � ðx � eBÞ ¼ 0 ð28Þ

The derivation results in the following coupling criterion
for the electric potential and velocity fields:
ðU; b2r � ðx � eBÞÞ ¼ ðV;r � ðg � eBÞÞ ð29Þ

The velocity operator G* is derived below:

ðx;GVÞ
 x;
oV

ot
þV �rvþ v �rV	r�R

�

þRaTPrð1	 c0bÞHeg	RacPrCeg

	RaTPrc0Dbheg	Ha2Prb2½	rUþV� eB�� eB

	2Ha2PrbDb½	r/þ v� eB�� eB

�

¼ 0 ð30Þ

Sampath and Zabaras [20] have derived a similar
equation related to magneto-convection. After some
simple but tedious algebra Eq. (30) becomes

V;	 ox
ot

	 v � rx þ x � rvT 	rp 	 Prr2x

�

	 Ha2Prb2½eBðx � eBÞ 	 x�
�
þ ðx; ð1	 c0bÞRaTPrHegÞ

	 ðx;RacPrCeg þ Ha2Prb2½	rU þ V � eB� � eBÞ
	 ðU;Ha2Prb2r � ðx � eBÞÞ 	 ðx;RaTPrc0DbhegÞ
	 ðx; 2Ha2PrbDb½	r/ þ v � eB� � eBÞ ¼ 0 ð31Þ

where p is the adjoint pressure. The adjoint velocity is
constrained such that $ Æ x = 0 in Xl(t) · [0, tmax] and
x(x, tmax) = 0 in Xl(tmax). Using the coupling equations
derived for the concentration, temperature and electric
potential operators (Eqs. (17), (24), (29)), Eq. (31) can
be simplified into the following form:

V;	 ox
ot

	 v � rx þ x � rvT 	rp 	 Prr2x

�

þ RaTPrwrh 	 RacPrnrc	 Ha2Prr � ðg � eBÞ

	 Ha2Prb2½eBðx � eBÞ 	 x�
�
	 ðx;RaTPrc0DbhegÞ

	 ðx; 2Ha2PrbDb½	r/ þ v � eB� � eBÞ ¼ 0 ð32Þ

Adding and subtracting (V, RaTPrv) to Eq. (32) gives

V;	 ox
ot

	 v � rx þ x � rvT 	rp 	 Prr2x

�

þ RaTPrwrh 	 RaTPrv 	 RacPrnrc

	 Ha2Prb2½eBðx � eBÞ 	 x� 	 Ha2Prr � ðg � eBÞ
�

þ ðV;RaTPrvÞ 	 ðx;RaTPrc0DbhegÞ
	 ðx; 2Ha2PrbDb½	r/ þ v � eB� � eBÞ ¼ 0 ð33Þ

The adjoint velocity operator is defined as

G�x 
 	 ox
ot

	 v � rx þ x � rvT 	rp 	 Prr2x

þ RaTPrwrh 	 RaTPrv 	 RacPrnrc

	 Ha2Prb2½eBðx � eBÞ 	 x� 	 Ha2Prr � ðg � eBÞ
¼ 0 ð34Þ



	 ox
ot

	 v � rx þ x � rvT þrp 	 Prr2x

þ RaTPrwrh 	 RaCPrnrc

	 Ha2Prb2½eBðx � eBÞ 	 x� 	 Ha2Prr � ðg � eBÞ
	 RaTPrv ¼ 0; ðx; tÞ 2 XlðtÞ � ½0; tmax�

r � x ¼ 0; ðx; tÞ 2 XlðtÞ � ½0; tmax�

	 on
ot

	 u � rn 	 Le	1r2n þ x � eg ¼ 0;

ðx; tÞ 2 XlðtÞ � ½0; tmax�

	 ow
ot

	 v � rw 	r2w þ ð1	 c0bÞx � eg ¼ 0;

ðx; tÞ 2 XlðtÞ � ½0; tmax�
r2g 	 b2r � ðx � eBÞ ¼ 0; ðx; tÞ 2 XlðtÞ � ½0; tmax�
ow
on

¼ 0;
on
on

¼ 0; ðx; tÞ 2 ðClðtÞ 	 CIðtÞÞ � ½0; tmax�

x ¼ 0;
og
on

¼ 0; ðx; tÞ 2 ClðtÞ � ½0; tmax�

ow
on

¼ 0; ðx; tÞ 2 CI � ½0; tmax�

on
on

¼ nLeðk 	 1Þvf � n; ðx; tÞ 2 CI � ½0; tmax�

xðx; tmaxÞ ¼ 0; nðx; tmaxÞ ¼ 0; wðx; tmaxÞ ¼ 0;

gðx; tmaxÞ ¼ 0; x 2 XlðtmaxÞ
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By forcing x(x, t; b) to satisfy Eq. (34) along with no-
slip boundary conditions at the boundaries, Eq. (30) re-
duces to

ðx;	RaTPrc0Dbheg 	 2Ha2PrbDb½	r/ þ v � eB� � eBÞ
þ ðV;RaTPrvÞ ¼ 0 ð35Þ

The adjoint system of equations is summarized in Box
III. Using Eqs. (10) and (35), one can finally obtain
the following relation:

DDbSðbÞ 
 ðS0ðbÞ;DbÞL2 ½0;tmax � ¼ ðv;VÞL2ðXl�½0;tmax�Þ

¼ x;Dbc0heg þ 2
Ha2

RaT
bDb½	r/þ v� eB� � eB

� �

The gradient of the cost function can therefore be writ-
ten in terms of the adjoint velocity field as follows:

S0ðbÞ 

Z

X

�
c0hðx � egÞ

þ 2Ha2

RaT
bx � ðð	r/ þ v � eBÞ � eBÞ

	
dX ð36Þ

This is a compact analytical solution for the gradient of
the cost functional in terms of the adjoint velocity in the
melt. This result will be used next within a conjugate
gradient optimization framework to obtain the desired
design solution for b(t) that leads to convection-less
solidification growth.
3.4. Numerical implementation

After having obtained an analytical expression for
the exact gradient, any of the standard functional min-
imization techniques can be used for solving the above
defined optimization problem in Eq. (9). Here, the
non-linear conjugate gradient method (CGM) in L2 is
used to minimize the cost functional S(b(t)). This meth-
od constructs a sequence b0, b1, . . . , bk, . . . , to approach
the optimum solution �bðtÞ. The solution of the direct,
adjoint and sensitivity problem is realized numerically
using the classical SUPG/PSPG method. A deforming
finite element formulation to explicitly track the solid–
liquid interface is used in the present work. Each mesh
(solid/melt) is deformed according to the motion of the
freezing interface. Sampath et al. [25] provide details of
various computational issues and solution methods that
are applied to solve the optimization problem. The en-
tire system of direct, sensitivity and adjoint equations
are implemented using an object oriented approach.
The interested reader can find details of the implemen-
tation and the application of object-oriented techniques
applied to adjoint-based inverse design problems in
[25,26].
Box III. Adjoint problem to define x(x, t; b), w(x, t; b),
n(x, t; b) and g(x, t; b)
4. Examples

4.1. Pure material/dilute alloy

In this example, the horizontal Bridgeman growth of
Antimony doped Germanium is considered. The ampule
is 10 cm long and 5 cm wide. The ampule is made of
pyrolytic boron nitride (PBN) with a thickness of
1 mm. The furnace closely envelops the crucible. A seed
of thickness 5 mm is initially placed on the left side of
the configuration and the ampule is filled with charge.
The furnace maintains a temperature gradient of 10 K/
cm (�25 K/in) in the melt zone and a higher gradient
of 30 K/cm (�75 K/in) in the solid zone. The tempera-
ture profile increases along the length of the ampule un-
til 40 K superheat is reached after which a constant
temperature is maintained. To maintain the stoichiome-
try of the crystal, arsenic gas at a predetermined pressure
is maintained over the free surface of the melt. The ther-
mophysical properties are taken from Adoranto et al.
[27] and Oreper et al. [4]. The ampule properties were
taken from Barvinschi et al. [28]. A simplified radiation
model relating the non-dimensional thermal gradient at
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the melt interface and the non-dimensional global tem-
perature is used:

oT
on

¼ hL
K

ðT infðxÞ 	 T Þ ð37Þ

where L is the characteristic length scale of the system
and

h ¼

Kampule

dampule

1þ Kampule

4dampuler�T 3
0

This gives us Neumann boundary conditions for the
horizontal bottom wall and the free surface. The crystal
is slowly pulled to the left. Directional solidification
takes place and a single crystal is produced. To bring
out the advantages of using a magnetic gradient on the
growth of single crystals a fairly large pulling rate of
about 10 cm/h was chosen.

First the horizontal Bridgeman growth of Antimony
doped Germanium under standard conditions (normal
earth gravity, no magnetic field) was simulated. At early
times, the thermal gradients in the originally quiescent
melt cause surface tension gradients on the free surface
as well as density gradients in the bulk liquid. This leads
to combined buoyancy and thermocapillary convection
in the fluid. The fluid velocities are maximum at the
top free surface in regions close to the moving solid–
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liquid interface. Continuity of the fluid flow slowly leads
to counter-clockwise circulation of the melt filling the
entire cavity (Fig. 2). As the solidification process pro-
ceeds further, the solid–liquid interface starts to curve,
with more solid volume formed at the bottom compared
to the top part of the cavity.

The bottom part manages to keep up with the mov-
ing imposed thermal gradients at the melt–ampule inter-
face but the aggressive flow towards the interface from
the hotter melt causes the front to move very slowly at
the top. This trend continues and can be clearly seen
in Fig. 3.

The initially flat interface gradually becomes very
skewed. In crystal growth a more or less planar interface
is desired. This can be achieved either by increasing the
thermal gradient or by reducing the pulling rate. Both
these measures have major economic consequences.
The streamline contours in Fig. 2 clearly show that once
the flow pattern has developed (by t = 0.7) it remains
steady. Notice also that there is a stratification of the
isotherms in the middle region of the melt. This would
result in the fluctuation of the temperature on the inter-
face and cause the formation of defects and striations.

The isopleths have an almost identical structure to
the flow pattern. Initially a high concentration spot is
formed at the left top of the melt domain. This is then
forced down by the thermocapillary induced convection.
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Fig. 4. Calculated history of the solid–liquid interface concen-
tration for the reference problem.
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Interestingly, the flow carries the rejected solute down to
the bottom of the melt, then across the bottom wall, up
the other wall and right back to the interface. In the
meantime, the concentration of the solute in the �flow
stream� gradually reduces due to diffusion. This periodic
recycling of the dopant at the interface causes a fluctua-
tion in the dopant concentration on the interface and
hence on the solid. This phenomenon can be seen in
the time history of the concentration at the interface
given in Fig. 4. The concentration excess in front of
the interface forms until about t = 1 after which it is re-
moved by the strong flow patterns. The flow recirculates
the solute back to the interface as seen by the fluctua-
tions in the concentration profile with time. Note that
these fluctuations become further apart and weaker as
time progresses. This is because along with convection
the solute is also diffused slowly into the middle rela-
tively quiet zone in the melt.

The crystal growth of GeSb in the horizontal Bridg-
eman growth configuration at higher crystal pulling
rates led to a wavy interface and cyclic fluctuations in
the temperature and concentration of the solute at the
solid-melt interface. Calculations were carried out for
crystal growth under the action of a uniformly imposed
magnetic field gradient (B dB

dz) of about 1.6 T2/cm. The
mean magnetic field resulted in Ha = 60. This corre-
sponds to the optimal magnetic field as computed in Sec-
tion 3.2 superimposed on a given magnetic gradient.
Note that these magnetic field conditions correspond
to c = 0.95. This (sub-optimal) value instead of c = 1
was selected here for presentation reasons only in order
to allow better visualization of the very weak melt flow
results. A weak roll develops at about t = 0.015 in the
upper left corner of the melt domain. At about the same
time, there is a weak flow towards the right at the bot-
tom right of the melt domain. Both these flow patterns
develop until about t = 0.05. After this, the two patterns
begin to interact and the recirculating cell shrinks to
form an elongated ellipse near the solidifying interface.
This roll fully develops to its maximum strength of 0.6
(compared to the 17.9 in the reference case) by about
t = 0.2. Thereafter the flow pattern is almost steady.
This is clearly seen in the streamline contours given in
Fig. 5. The isotherms are nearly parallel to the interface
all through the simulation and they closely follow the
movement of the externally imposed temperature gradi-
ent. This suggests that the heat transfer is nearly conduc-
tion-based, with minute local convection effects. The
interface growth speed follows the pulling speed. Fig. 6
shows the interface profile with time. Note the signifi-
cant difference between the interface profiles in the two
cases in Figs. 3 and 6. Initially, the melt–crystal interface
is planar in both cases. In the reference case, with
increasing time, the surface tension induced back flow
at the top of the melt causes the interface growth velo-
city at the top surface to become extremely small. The
planar front quickly deteriorates. With the application
of the magnetic field superimposed on a magnetic gradi-
ent, the interface stays planar with uniform temperature
distribution all along the interface. The impact of the
application of a magnetic field on the growing front is
seen in Fig. 7. The standard deviations of the curvature
(deviation from a planar interface) of the preceding two
cases (an applied magnetic field gradient and reference
case) are plotted as a function of time. Note the signifi-
cant differences in the standard deviation of the interface
for the two cases. Fig. 8 shows the interface concen-
tration profile with time. The concentration is mainly
diffusion-based with nearly uniform concentration all
throughout the growth run. It must be noted that the
concentration on the interface increases very slowly al-
beit uniformly due to the accumulation of the solute in
front of the interface. The slow moving melt could still
produce long time-period, low amplitude oscillations in
the concentration at the interface (due to recirculation),
but this was not observed during the entire growth
run.
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4.2. Binary alloy

In this example, solidification of a binary alloy in a
rectangular cavity of dimensions 2 cm · 2 cm is consid-
ered. The physical properties of the system are given
as Pr = 0.007, RaT = 200000.0, RaC = 10000.0,
Le = 1000.0, Ste = 0.034, Rk = 0.4358, Ra = 0.4358
and m = 	0.001. The mass magnetic susceptibility of
the melt is v = 7.6 · 10	8. The initial temperature of
the melt was 40 �C above the melting point of the fluid.
The left wall is maintained at 40 �C below the freezing
temperature for the duration of the simulation. The
growth was simulated for a dimensionless time of 0.2.
The melt computational domain consisted of 1200 quad-
rilateral elements and 1271 nodes, while the solid com-
putational domain consisted of 800 quadrilateral
elements and 861 nodes. The total simulation consisting
of the direct, sensitivity and adjoint problems took
around 3.0 h on a Pentium-4 processor based PC.



Fig. 8. Calculated history of the solid–liquid interface concen-
tration under the influence of a magnetic gradient.
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4.2.1. Definition of the inverse design problem

The inverse design problem to be examined here is as
follows:

Find the magnetic field b(t) superimposed upon a constant

magnetic gradient (oB
oz ¼ c, given) such that convection less

growth leading to a vertical interface growth is achieved

during the complete growth.

The time domain [0, tmax] is taken with tmax = 0.2.
This is chosen because beyond this time, the temperature
of the melt reaches a temperature close to the freezing
temperature and the velocity in the melt region is negli-
gible. Therefore, the end condition difficulty associated
with the adjoint method will not be important [20]. An
initial guess of bðtÞ ¼ RaT	RaC

RaT
is used to start the CGM

iterations. The magnetic field is here non-dimensional-
ized using a reference field Bref corresponding to
Ha = 60. The constant magnetic field gradient is then
defined as Bref

dB
dz ¼ 1.6 T2/cm.

Within each CGM iteration, the direct, adjoint and
sensitivity problems are solved using the algorithm men-
tioned earlier. The spatial and temporal discretization
remain the same for all three problems. The total num-
ber of time steps involved in the solution of each of the
direct, sensitivity and adjoint problems is 401. The total
computational time for each CGM iteration including
the solution of the three subproblems was about 3.0 h.
This included considerable time spent on reading/writ-
ing data as the adjoint and the sensitivity problems re-
quire the direct problem solution at each time step of
their solution. The convergence of the CGM is shown
in Fig. 9. The computations were stopped after the cost
functional reached a specified error tolerance of
5 · 10	4. The temporal variation of the optimal external
magnetic field to be applied is given in Fig. 10.

4.2.2. Validation of the inverse design solution

In order to see how close the desired objectives were
met a comparison of the optimal solution with a refer-
ence case was made. The reference case involved running
the direct problem for no applied magnetic field whereas
the optimal solution involved running the direct prob-
lem with the magnetic field obtained from the converged
CGM optimization scheme (Fig. 10).

To evaluate whether the desired flat interface is ob-
tained the interface positions and shapes for the refer-
ence case and the optimal case are shown in Fig. 11.
The optimal magnetic field ensures a perfectly planar
growth front. To evaluate whether the desired convec-
tion-less growth is achieved, isotherms of the reference
case as well as the optimal solution are plotted in Fig.
12. Under the action of the optimal magnetic field the
isotherms are parallel to the moving front at all times
during the growth simulation. The substantial suppres-
sion of velocity in the melt is brought out by the stream-
line contours shown in Fig. 13. The maximum strength
of the vorticity reduced from 1.8 to about 0.025.
The maximum strength of the velocity reduced from
vmax = 45.82 to about vmax = 0.15. As a consequence
of a planar interface and diffusion-dominated growth,
the concentration evolution is not affected by convection
and is diffusion-based. A comparison of the isochors of
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the two above mentioned cases is provided in Fig. 14.
Compare the uniform distribution of the solute along
the length of the interface under the action of the mag-
netic gradient to the isochors for the reference case. The
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solute is uniformly distributed along the length of the
interface. This results in a homogeneous distribution
of the solute in the solid. The application of the optimal
magnetic field along with the superimposed magnetic
gradient produces a combination of Lorentz and Kelvin
forces which indeed causes a substantial reduction of
melt flow thus leading to nearly diffusion-based solidifi-
cation conditions.
5. Conclusions and suggestions

A systematic continuum formulation using the adjoint
method was proposed for the design of solidification pro-
cesses. The objective was the control of the externally ap-
plied magnetic field such that the solidification of the
material proceeds in a convection-less environment. An
inverse design problem was defined and the exact gradi-
ent of the cost functional was obtained using the solution
of an adjoint system of equations. The conjugate gradient
method in L2 was used to solve for the optimal magnetic
field. The application of the optimal calculated magnetic
field along with a superimposed magnetic gradient re-
sulted in a uniform growth of the interface and suppres-
sion of temperature and concentration fluctuations in
the solid. It has been shown that, through proper applica-
tion of a magnetic field (and gradient(s)) a state of earth-
based reduced gravity growth, resulting in better quality
of crystals can be achieved.

The feasibility of the control of solidification through
the application of magnetic fields and superimposed
magnetic gradients was demonstrated by the examples
in Section 4. It is emphasized that the control parameter
in this work is only the magnitude of the magnetic field.
The present methodology can be further extended to the
design of the orientation as well as the magnitude of the
magnetic fields. This can be applied to the quality con-
trol of various conducting materials in different manu-
facturing applications like crystal growth and metal
casting. Furthermore, real time feedback control of crys-
tal growth and solidification processes is also a very
promising issue.
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